Blog

  • Ahmad F, Das D, Kommaddi RP, Diwakar L, Gowaikar R, Rupanagudi KV, Bennett DA, Ravindranath V (2018) Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer’s disease mice and correlates with memory deficits in human subjects. Sci Rep 8:13119. https://doi.org/10.1038/s41598-018-31073-6

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aldridge JE, Horibe T, Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2:e874. https://doi.org/10.1371/journal.pone.0000874

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alldred MJ, Che S, Ginsberg SD (2008) Terminal continuation (TC) RNA amplification enables expression profiling using minute RNA input obtained from mouse brain. Int J Mol Sci 9:2091–2104

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alldred MJ, Ibrahim KW, Pidikiti H, Chiosis G, Mufson EJ, Stutzmann GE, Ginsberg SD (2024) Down syndrome frontal cortex layer III and layer V pyramidal neurons exhibit lamina specific degeneration in aged individuals. Acta Neuropathol Commun 12:182. https://doi.org/10.1186/s40478-024-01891-z

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alldred MJ, Penikalapati SC, Lee SH, Heguy A, Roussos P, Ginsberg SD (2021) Profiling basal forebrain cholinergic neurons reveals a molecular basis for vulnerability within the Ts65Dn model of Down syndrome and Alzheimer’s disease. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02453-3

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen TG, Abogadie FC, Brown DA (2006) Simultaneous release of glutamate and acetylcholine from single magnocellular “cholinergic” basal forebrain neurons. J Neurosci 26:1588–1595. https://doi.org/10.1523/JNEUROSCI.3979-05.2006

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

    Article 
    PubMed 

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    CAS 
    PubMed 

    Google Scholar 

  • Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424

    CAS 
    PubMed 

    Google Scholar 

  • Beck JS, Madaj Z, Cheema CT, Kara B, Bennett DA, Schneider JA, Gordon MN, Ginsberg SD, Mufson EJ, Counts SE (2022) Co-expression network analysis of frontal cortex during the progression of Alzheimer’s disease. Cereb Cortex. https://doi.org/10.1093/cercor/bhac001

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck JS, Mufson EJ, Counts SE (2015) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:610

    Google Scholar 

  • Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and rush memory and aging project. J Alzheimers Dis 64:S161–S189. https://doi.org/10.3233/JAD-179939

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205

    CAS 
    PubMed 

    Google Scholar 

  • Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW (2013) Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging 34:1653–1661. https://doi.org/10.1016/j.neurobiolaging.2012.11.024

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bonda DJ, Castellani RJ, Zhu X, Nunomura A, Lee HG, Perry G, Smith MA (2011) A novel perspective on tau in Alzheimer’s disease. Curr Alzheimer Res 8:639–642. https://doi.org/10.2174/156720511796717131

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E et al (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5573–5578. https://doi.org/10.1073/pnas.0601279103

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowser R, Kordower JH, Mufson EJ (1997) A confocal microscopic analysis of galaninergic hyperinnervation of cholinergic basal forebrain neurons in Alzheimer’s disease. Brain Pathol 7:723–730

    CAS 
    PubMed 

    Google Scholar 

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/bf00308809

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol Aging 25:713–718. https://doi.org/10.1016/j.neurobiolaging.2003.12.015. (discussion 743-716)

    Article 
    PubMed 

    Google Scholar 

  • Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta 1852:1665–1675. https://doi.org/10.1016/j.bbadis.2015.05.001

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(Suppl 1):S97–S111. https://doi.org/10.3233/JAD-132477

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH (2001) Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 437:296–307

    CAS 
    PubMed 

    Google Scholar 

  • Clarke MTM, Brinkmalm A, Foiani MS, Woollacott IOC, Heller C, Heslegrave A, Keshavan A, Fox NC, Schott JM, Warren JD et al (2019) CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimers Res Ther 11:105. https://doi.org/10.1186/s13195-019-0564-2

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Combs B, Mueller RL, Morfini G, Brady ST, Kanaan NM (2019) Tau and axonal transport misregulation in tauopathies. Adv Exp Med Biol 1184:81–95. https://doi.org/10.1007/978-981-32-9358-8_7

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ (2013) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79C:172–179. https://doi.org/10.1016/j.neuropharm.2013.10.018

    Article 
    CAS 

    Google Scholar 

  • Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ (2014) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179. https://doi.org/10.1016/j.neuropharm.2013.10.018

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Counts SE, Che S, Ginsberg SD, Mufson EJ (2011) Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer’s disease. J Chem Neuroanat 42:111–117. https://doi.org/10.1016/j.jchemneu.2011.02.004

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Counts SE, He B, Che S, Ginsberg SD, Mufson EJ (2009) Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer’s disease. J Alzheimers Dis 18:885–896

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Counts SE, He B, Che S, Ginsberg SD, Mufson EJ (2008) Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer’s disease. Neurodegener Dis 5:228

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Counts SE, He B, Che S, Ikonomovic MD, DeKosky ST, Ginsberg SD, Mufson EJ (2007) Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease. Arch Neurol 64:1771–1776

    PubMed 

    Google Scholar 

  • Counts SE, He B, Nadeem M, Wuu J, Scheff SW, Mufson EJ (2012) Hippocampal drebrin loss in mild cognitive impairment. Neurodegener Dis 10:216–219. https://doi.org/10.1159/000333122

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Counts SE, Mufson EJ (2005) The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J Neuropathol Exp Neurol 64:263–272

    CAS 
    PubMed 

    Google Scholar 

  • Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ (2006) Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 65:592–601

    CAS 
    PubMed 

    Google Scholar 

  • Counts SE, Nadeem M, Wuu J, Ginsberg SD, Saragovi HU, Mufson EJ (2004) Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease. Ann Neurol 56:520–531

    CAS 
    PubMed 

    Google Scholar 

  • Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114. https://doi.org/10.3389/fneur.2013.00114

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Rocha TJ, Silva Alves M, Guisso CC, de Andrade FM, Camozzato A, de Oliveira AA, Fiegenbaum M (2018) Association of GPX1 and GPX4 polymorphisms with episodic memory and Alzheimer’s disease. Neurosci Lett 666:32–37. https://doi.org/10.1016/j.neulet.2017.12.026

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406

    CAS 
    PubMed 

    Google Scholar 

  • de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJM, Moerland PD, Huitinga I, Swaab DF, Verhaagen J (2024) Gene-expression profiling of individuals resilient to Alzheimer’s disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response. Acta Neuropathol Commun 12:68. https://doi.org/10.1186/s40478-024-01760-9

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhar SS, Liang HL, Wong-Riley MT (2009) Nuclear respiratory factor 1 co-regulates AMPA glutamate receptor subunit 2 and cytochrome c oxidase: tight coupling of glutamatergic transmission and energy metabolism in neurons. J Neurochem 108:1595–1606

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhar SS, Wong-Riley MT (2009) Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 29:483–492

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du F, Yu Q, Kanaan NM, Yan SS (2022) Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet 31:2498–2507. https://doi.org/10.1093/hmg/ddab363

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, De Los Santos MB, Klickstein N, Corjuc DL, Corjuc BT et al (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 26:1256–1263. https://doi.org/10.1038/s41591-020-0938-9

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falke E, Nissanov J, Mitchell TW, Bennett DA, Trojanowski JQ, Arnold SE (2003) Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density. Am J Pathol 163:1615–1621. https://doi.org/10.1016/S0002-9440(10)63518-3

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Figueiro-Silva J, Gruart A, Clayton KB, Podlesniy P, Abad MA, Gasull X, Delgado-Garcia JM, Trullas R (2015) Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity. J Neurosci 35:5504–5521. https://doi.org/10.1523/JNEUROSCI.2548-14.2015

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    CAS 
    PubMed 

    Google Scholar 

  • Fukutani Y, Cairns NJ, Shiozawa M, Sasaki K, Sudo S, Isaki K, Lantos PL (2000) Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in late-onset sporadic Alzheimer’s disease. Psychiatry Clin Neurosci 54:523–529. https://doi.org/10.1046/j.1440-1819.2000.00747.x

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Furuya TK, Silva PN, Payao SL, Bertolucci PH, Rasmussen LT, De Labio RW, Braga IL, Chen ES, Turecki G, Mechawar N et al (2012) Analysis of SNAP25 mRNA expression and promoter DNA methylation in brain areas of Alzheimer’s Disease patients. Neuroscience 220:41–46. https://doi.org/10.1016/j.neuroscience.2012.06.035

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gene Ontology C (2021) The gene ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113

    Article 
    CAS 

    Google Scholar 

  • Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318. https://doi.org/10.1097/NEN.0b013e31816a1df3

    Article 
    PubMed 

    Google Scholar 

  • Giannakopoulos P, von Gunten A, Kovari E, Gold G, Herrmann FR, Hof PR, Bouras C (2007) Stereological analysis of neuropil threads in the hippocampal formation: relationships with Alzheimer’s disease neuronal pathology and cognition. Neuropathol Appl Neurobiol 33:334–343. https://doi.org/10.1111/j.1365-2990.2007.00827.x

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ginsberg SD (2008) Transcriptional profiling of small samples in the central nervous system. Methods Mol Biol 439:147–158

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV, Mufson EJ, Nixon RA et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginsberg SD, Che S (2004) Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab Invest 84:952–962

    CAS 
    PubMed 

    Google Scholar 

  • Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Neurochem 96:1401–1408

    CAS 
    PubMed 

    Google Scholar 

  • Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Single cell gene expression profiling in Alzheimer’s disease. NeuroRx 3:302–318

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97:475–487

    CAS 
    PubMed 

    Google Scholar 

  • Ginsberg SD, Mufson EJ, Alldred MJ, Counts SE, Wuu J, Nixon RA, Che S (2011) Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Chem Neuroanat 42:102–110. https://doi.org/10.1016/j.jchemneu.2011.05.012

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez-Isla T, Frosch MP (2022) Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes. Nat Rev Neurol 18:323–332. https://doi.org/10.1038/s41582-022-00642-9

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guerrero-Munoz MJ, Gerson J, Castillo-Carranza DL (2015) Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9:464. https://doi.org/10.3389/fncel.2015.00464

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo Y, Chen SD, You J, Huang SY, Chen YL, Zhang Y, Wang LB, He XY, Deng YT, Zhang YR et al (2024) Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer’s disease. Nat Hum Behav 8:2047–2066. https://doi.org/10.1038/s41562-024-01924-6

    Article 
    PubMed 

    Google Scholar 

  • Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, van der Vies SM, Rozemuller AJ, Smit AB (2016) Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12:654–668. https://doi.org/10.1016/j.jalz.2015.11.002

    Article 
    PubMed 

    Google Scholar 

  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. https://doi.org/10.1016/j.jalz.2011.10.007

    Article 
    PubMed 

    Google Scholar 

  • Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097

    CAS 
    PubMed 

    Google Scholar 

  • Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26:769–780. https://doi.org/10.1038/s41591-020-0815-6

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jovaisaite V, Auwerx J (2015) The mitochondrial unfolded protein response-synchronizing genomes. Curr Opin Cell Biol 33:74–81. https://doi.org/10.1016/j.ceb.2014.12.003

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC Jr., Greengard P, Czernik AJ (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci 21:7944–7953. https://doi.org/10.1523/JNEUROSCI.21-20-07944.2001

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ (2022) Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 4:fcac162. https://doi.org/10.1093/braincomms/fcac162

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE (2017) Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun 5:8. https://doi.org/10.1186/s40478-017-0411-2

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE (2019) Locus coeruleus degeneration induces forebrain vascular pathology in a transgenic rat model of Alzheimer’s disease. J Alzheimers Dis 70:371–388. https://doi.org/10.3233/JAD-190090

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King D, Holt K, Toombs J, He X, Dando O, Okely JA, Tzioras M, Rose J, Gunn C, Correia A et al (2023) Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement 19:2560–2574. https://doi.org/10.1002/alz.12894

    Article 
    PubMed 

    Google Scholar 

  • Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6:63. https://doi.org/10.1186/1750-1326-6-63

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG et al (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol Commun 4:34. https://doi.org/10.1186/s40478-016-0299-2

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article 
    CAS 

    Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39. https://doi.org/10.1186/1750-1326-6-39

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700. https://doi.org/10.1038/srep00700

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD(+) in brain aging and neurodegenerative disorders. Cell Metab 30:630–655. https://doi.org/10.1016/j.cmet.2019.09.001

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Q, Wang X, Hu Y, Zhao JN, Huang CH, Li T, Zhang BG, He Y, Wu YQ, Zhang ZJ et al (2023) Acetylated tau exacerbates learning and memory impairment by disturbing with mitochondrial homeostasis. Redox Biol 62:102697. https://doi.org/10.1016/j.redox.2023.102697

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marchesan E, Nardin A, Mauri S, Bernardo G, Chander V, Di Paola S, Chinellato M, von Stockum S, Chakraborty J, Herkenne S et al (2024) Activation of Ca(2+) phosphatase calcineurin regulates Parkin translocation to mitochondria and mitophagy in flies. Cell Death Differ 31:217–238. https://doi.org/10.1038/s41418-023-01251-9

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46

    PubMed 

    Google Scholar 

  • Mary A, Eysert F, Checler F, Chami M (2023) Mitophagy in Alzheimer’s disease: molecular defects and therapeutic approaches. Mol Psychiatry 28:202–216. https://doi.org/10.1038/s41380-022-01631-6

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mate De Gerando A, Welikovitch LA, Khasnavis A, Commins C, Glynn C, Chun JE, Perbet R, Hyman BT (2023) Tau seeding and spreading in vivo is supported by both AD-derived fibrillar and oligomeric tau. Acta Neuropathol 146:191–210. https://doi.org/10.1007/s00401-023-02600-1

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article 
    PubMed 

    Google Scholar 

  • Meftah S, Gan J (2023) Alzheimer’s disease as a synaptopathy: evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 15:1129036. https://doi.org/10.3389/fnsyn.2023.1129036

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    CAS 
    PubMed 

    Google Scholar 

  • Mesulam MM (2013) Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 521:4124–4144. https://doi.org/10.1002/cne.23415

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    CAS 
    PubMed 

    Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    CAS 
    PubMed 

    Google Scholar 

  • Montine TJ, Cholerton BA, Corrada MM, Edland SD, Flanagan ME, Hemmy LS, Kawas CH, White LR (2019) Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimers Res Ther 11:22. https://doi.org/10.1186/s13195-019-0479-y

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS et al (2012) National institute on aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ (1997) NGF, p75NTR and trkA in Alzheimer’s disease. Promega Neural Notes, City, pp 16–19

  • Mufson EJ, Bothwell M, Hersh LB, Kordower JH (1989) Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. J Comp Neurol 285:196–217

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Bothwell M, Kordower JH (1989) Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp Neurol 105:221–232

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD (2007) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 4:340–350

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Counts SE, Ginsberg SD (2002) Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease. Neurochem Res 27:1035–1048

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Counts SE, Perez SE, Binder L (2005) Galanin plasticity in the cholinergic basal forebrain in Alzheimer’s disease and transgenic mice. Neuropeptides 39:232–236

    Google Scholar 

  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26:233–242

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD (2016) Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav Brain Res 311:54–69. https://doi.org/10.1016/j.bbr.2016.05.030

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI et al (2002) Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 443:136–153

    CAS 
    PubMed 

    Google Scholar 

  • Mufson EJ, Ward S, Binder L (2014) Prefibrillar tau oligomers in mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis 13:151–153. https://doi.org/10.1159/000353687

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neff RA, Wang M, Vatansever S, Guo L, Ming C, Wang Q, Wang E, Horgusluoglu-Moloch E, Song WM, Li A et al (2021) Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv. https://doi.org/10.1126/sciadv.abb5398

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niewiadomska G, Niewiadomski W, Steczkowska M, Gasiorowska A (2021) Tau oligomers neurotoxicity. Life. https://doi.org/10.3390/life11010028

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann N Y Acad Sci 747:77–91

    CAS 
    PubMed 

    Google Scholar 

  • Ohrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Hansson O, Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K (2016) The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimers Res Ther 8:41. https://doi.org/10.1186/s13195-016-0208-8

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel AO, Caldwell AB, Ramachandran S, Subramaniam S (2023) Endotype characterization reveals mechanistic differences across brain regions in sporadic Alzheimer’s disease. J Alzheimers Dis Rep 7:957–972. https://doi.org/10.3233/ADR-220098

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pellegrino MW, Nargund AM, Haynes CM (2013) Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta 1833:410–416. https://doi.org/10.1016/j.bbamcr.2012.02.019

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pelucchi S, Gardoni F, Di Luca M, Marcello E (2022) Synaptic dysfunction in early phases of Alzheimer’s disease. Handb Clin Neurol 184:417–438. https://doi.org/10.1016/B978-0-12-819410-2.00022-9

    Article 
    PubMed 

    Google Scholar 

  • Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q (2024) Inhibitor of DNA binding protein 3 (ID3) and nuclear respiratory factor 1 (NRF1) mediated transcriptional gene signatures are associated with the severity of cerebral amyloid angiopathy. Mol Neurobiol 61:835–882. https://doi.org/10.1007/s12035-023-03541-2

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I, Fernandez-Carballo L, de Munain EL, Perez J, Marquie M et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136:2510–2526. https://doi.org/10.1093/brain/awt171

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price JL, McKeel DW Jr., Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW et al (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quntanilla RA, Tapia-Monsalves C (2020) The role of mitochondrial impairment in Alzheimer s disease neurodegeneration: the Tau connection. Curr Neuropharmacol 18:1076–1091. https://doi.org/10.2174/1570159X18666200525020259

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    CAS 
    PubMed 

    Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF (1996) Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience 75:373–387

    CAS 
    PubMed 

    Google Scholar 

  • Samluk L, Ostapczuk P, Dziembowska M (2022) Long-term mitochondrial stress induces early steps of tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Mol Biol Cell 33:ar67. https://doi.org/10.1091/mbc.E21-11-0553

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sassin I, Schultz C, Thal DR, Rub U, Arai K, Braak E, Braak H (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol (Berl) 100:259–269

    CAS 
    PubMed 

    Google Scholar 

  • Saura CA, Parra-Damas A, Enriquez-Barreto L (2015) Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease. Front Cell Neurosci 9:318. https://doi.org/10.3389/fncel.2015.00318

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11:29–37

    CAS 
    PubMed 

    Google Scholar 

  • Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

    CAS 
    PubMed 

    Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    CAS 
    PubMed 

    Google Scholar 

  • Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66:200–208. https://doi.org/10.1002/ana.21706

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo T et al (2017) A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 4(60–72):e64. https://doi.org/10.1016/j.cels.2016.11.006

    Article 
    CAS 

    Google Scholar 

  • Shekari A, Fahnestock M (2019) Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiol Aging 84:131–140. https://doi.org/10.1016/j.neurobiolaging.2019.07.018

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429. https://doi.org/10.1111/j.1471-4159.2011.07581.x

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smiley JF, Mesulam MM (1999) Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 88:241–255

    CAS 
    PubMed 

    Google Scholar 

  • Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S et al (2017) Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552:187–193. https://doi.org/10.1038/nature25143

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sultana R, Banks WA, Butterfield DA (2010) Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer’s disease. J Neurosci Res 88:469–477. https://doi.org/10.1002/jnr.22227

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swanson E, Breckenridge L, McMahon L, Som S, McConnell I, Bloom GS (2017) Extracellular tau oligomers induce invasion of endogenous tau into the somatodendritic compartment and axonal transport dysfunction. J Alzheimers Dis 58:803–820. https://doi.org/10.3233/JAD-170168

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265-279

    PubMed 

    Google Scholar 

  • Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944

    CAS 
    PubMed 

    Google Scholar 

  • Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51:D638–D646. https://doi.org/10.1093/nar/gkac1000

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    CAS 
    PubMed 

    Google Scholar 

  • Tiernan CT, Combs B, Cox K, Morfini G, Brady ST, Counts SE, Kanaan NM (2016) Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Exp Neurol 283:318–329. https://doi.org/10.1016/j.expneurol.2016.06.030

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiernan CT, Ginsberg SD, Guillozet-Bongaarts AL, Ward SM, He B, Kanaan NM, Mufson EJ, Binder LI, Counts SE (2016) Protein homeostasis gene dysregulation in pretangle bearing nucleus basalis neurons during the progression of Alzheimer’s disease. Neurobiol Aging 42:80–90

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE (2018) Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer’s disease. Neurobiol Dis 117:125–136. https://doi.org/10.1016/j.nbd.2018.05.021

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiernan CT, Mufson EJ, Kanaan NM, Counts SE (2017) Tau oligomer pathology in nucleus basalis neurons during the progression of Alzheimer’s disease. J Neuropathol Exp Neurol 77:246

    Google Scholar 

  • Utz J, Berner J, Munoz LE, Oberstein TJ, Kornhuber J, Herrmann M, Maler JM, Spitzer P (2021) Cerebrospinal fluid of patients with Alzheimer’s disease contains increased percentages of synaptophysin-bearing microvesicles. Front Aging Neurosci 13:682115. https://doi.org/10.3389/fnagi.2021.682115

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vana L, Kanaan NM, Ugwu IC, Wuu J, Mufson EJ, Binder LI (2011) Progression of tau pathology in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. Am J Pathol 179:2533–2550. https://doi.org/10.1016/j.ajpath.2011.07.044

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103. https://doi.org/10.1523/JNEUROSCI.1357-09.2009

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward SM, Himmelstein DS, Lancia JK, Fu Y, Patterson KR, Binder LI (2013) TOC1: characterization of a selective oligomeric tau antibody. J Alzheimers Dis 37:593–602. https://doi.org/10.3233/JAD-131235

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward SM, Himmelstein DS, Ren Y, Fu Y, Yu XW, Roberts K, Binder LI, Sahara N (2014) TOC1: a valuable tool in assessing disease progression in the rTg4510 mouse model of tauopathy. Neurobiol Dis 67:37–48. https://doi.org/10.1016/j.nbd.2014.03.002

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    CAS 
    PubMed 

    Google Scholar 

  • Wiener HW, Perry RT, Chen Z, Harrell LE, Go RC (2007) A polymorphism in SOD2 is associated with development of Alzheimer’s disease. Genes Brain Behav 6:770–775. https://doi.org/10.1111/j.1601-183X.2007.00308.x

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB et al (2024) Proteomic changes in the human cerebrovasculature in Alzheimer’s disease and related tauopathies linked to peripheral biomarkers in plasma and cerebrospinal fluid. Alzheim Dement 20:4043–4065. https://doi.org/10.1002/alz.13821

    Article 
    CAS 

    Google Scholar 

  • Wu H, Williams J, Nathans J (2014) Complete morphologies of basal forebrain cholinergic neurons in the mouse. Elife 3:e02444. https://doi.org/10.7554/eLife.02444

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu M, Zhang M, Yin X, Chen K, Hu Z, Zhou Q, Cao X, Chen Z, Liu D (2021) The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Transl Neurodegener 10:45. https://doi.org/10.1186/s40035-021-00270-1

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng J, Akbari M, Schirmer C, Reynaert ML, Loyens A, Lefebvre B, Buee L, Croteau DL, Galas MC, Bohr VA (2020) Hippocampal tau oligomerization early in tau pathology coincides with a transient alteration of mitochondrial homeostasis and DNA repair in a mouse model of tauopathy. Acta Neuropathol Commun 8:25. https://doi.org/10.1186/s40478-020-00896-8

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, Wang YC, Swerts J, Beyens J, Miskiewicz K et al (2017) Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8:15295. https://doi.org/10.1038/ncomms15295

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S253-262. https://doi.org/10.3233/JAD-2012-129005

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

Continue Reading

  • GameStop Rises 7% In Premarket Boosted By White House AI Meme Post

    GameStop Rises 7% In Premarket Boosted By White House AI Meme Post

    Topline

    Shares of GameStop surged more than 7% in premarket trading early on Monday morning after the White House boosted a social media post made by the video game retailer with an AI-generated meme of President Donald Trump.

    Continue Reading

  • Conrad Corfu to Open in 2026 in Secluded Seafront Setting

    Conrad Corfu to Open in 2026 in Secluded Seafront Setting

    Hilton (NYSE: HLT) has today announced the signing of Conrad Corfu following a franchise agreement with the Troulis family. Slated to open its doors ahead of the 2026 summer season, the luxury hotel will feature 136 rooms, suites and villas, a…

    Continue Reading

  • Scientists Reveal Secrets Beneath Mysterious Volcano

    Scientists Reveal Secrets Beneath Mysterious Volcano

    How do volcanoes function beneath their rocky surfaces? What drives the rumbling vibrations, called tremor, that occur when molten rock or gases travel upward through underground channels? Professor Dr. Miriam Christina Reiss, a volcano…

    Continue Reading

  • Pigments extracted from the henna dye could be used to treat liver disease

    Pigments extracted from the henna dye could be used to treat liver disease

    Lawsonia inermis is best known for making henna, a versatile dye that is used to change the color of skin and clothes. Now, researchers from Osaka Metropolitan University have found another use for the pigments extracted from the…

    Continue Reading

  • Kazia Therapeutics to Request FDA Type C Meeting to Discuss Overall Survival Data in GBM and Potential NDA Filing in Alignment with FDA initiative Project FrontRunner

    SYDNEY, Oct. 27, 2025 /PRNewswire/ — Kazia Therapeutics Limited (“Kazia” or the “Company”) today announced its intention to request and hold a follow-up Type C meeting with the U.S. Food & Drug Administration (FDA) to discuss overall survival (OS) findings in newly diagnosed glioblastoma (GBM) patients treated with paxalisib and to seek agency feedback on a potential regulatory pathway aligned with the FDA Oncology Center of Excellence’s Project FrontRunner initiative.

    “GBM remains one of the most lethal cancers with limited therapeutic options. In line with the FDA Oncology Center of Excellence’s Project FrontRunner initiative, we intend to engage the Agency to discuss whether the overall survival data generated in newly diagnosed GBM patients treated with paxalisib may be adequate to support a conditional approval pathway,” said Dr. John Friend, M.D., Chief Executive Officer of Kazia Therapeutics. “Consistent with this framework, Kazia will propose initiation of the post-approval, randomized Phase 3 confirmatory study prior to submission of the NDA, ensuring that our regulatory strategy fully reflects the FDA’s renewed emphasis on overall survival as the most meaningful endpoint for patients and clinicians.”

    In its recently issued draft guidance, the FDA stated that overall survival is the “gold standard” endpoint in oncology and “should be prioritized as the primary endpoint when feasible,” particularly in diseases with a short natural history where survival can be reliably assessed. Kazia believes GBM is precisely such a setting and intends to present survival analyses, supporting clinical safety, and planned confirmatory trial design for FDA discussion.

    Project FrontRunner is an FDA Oncology Center of Excellence initiative encouraging sponsors to consider when it may be appropriate to seek approval of cancer drugs for advanced or metastatic disease in an earlier clinical setting, rather than the traditional approach of developing therapies only for patients who have exhausted available treatment options.

    As announced in July 2024, in the prespecified secondary analysis in newly diagnosed (up-front) unmethylated GBM patients, median OS was 15.54 months in the paxalisib arm (n = 54) versus 11.89 months for concurrent standard of care (SOC) (n = 46). Kazia intends to reference Project FrontRunner principles in its Type C briefing package, including an OS-driven confirmatory study plan in newly diagnosed GBM.

    “We are moving decisively to bring paxalisib forward in GBM using the endpoints that matter most to patients and physicians,” added Dr. Friend. “Our objective is to work collaboratively with the FDA under the guiding principles of Project FrontRunner to pursue a conditional approval in the front-line treatment setting of glioblastoma. In parallel, Kazia will initiate the post-approval, randomized Phase 3 study prior to filing the NDA, ensuring that our development plan fully aligns with the Agency’s modernized, patient-focused framework.”

    Kazia also notes that leading oncology companies have begun publicly referencing Project FrontRunner in successful FDA actions, underscoring the initiative’s growing relevance for sponsors developing first-line or earlier-setting therapies.

    For investor and media, please contact Alex Star, Managing Director LifeSci Advisors LLC, [email protected], +1-201-786-8795.

    About Kazia Therapeutics Limited

    Kazia Therapeutics Limited (NASDAQ: KZIA) is an oncology-focused drug development company, based in Sydney, Australia. Our lead program is paxalisib, an investigational brain penetrant inhibitor of the PI3K / Akt / mTOR pathway, which is being developed to treat multiple forms of cancer. Licensed from Genentech in late 2016, paxalisib is or has been the subject of ten clinical trials in this disease. A completed Phase 2/3 study in glioblastoma (GBM-Agile) was reported in 2024 and discussions are ongoing for designing and executing a pivotal registrational study in pursuit of a standard approval. Other clinical trials involving paxalisib are ongoing in advanced breast cancer, brain metastases, diffuse midline gliomas, and primary central nervous system lymphoma, with several of these trials having reported encouraging interim data. Paxalisib was granted Orphan Drug Designation for glioblastoma by the U.S. Food and Drug Administration (FDA) in February 2018, and Fast Track Designation (FTD) for glioblastoma by the FDA in August 2020. Paxalisib was also granted FTD in July 2023 for the treatment of solid tumor brain metastases harboring PI3K pathway mutations in combination with radiation therapy. In addition, paxalisib was granted Rare Pediatric Disease Designation and Orphan Drug Designation by the FDA for diffuse intrinsic pontine glioma in August 2020, and for atypical teratoid / rhabdoid tumors in June 2022 and July 2022, respectively. Kazia is also developing EVT801, a small molecule inhibitor of VEGFR3, which was licensed from Evotec SE in April 2021. Preclinical data has shown EVT801 to be active against a broad range of tumor types and has provided evidence of synergy with immuno-oncology agents. A Phase I study has been completed and preliminary data was presented at 15th Biennial Ovarian Cancer Research Symposium in September 2024. For more information, please visit www.kaziatherapeutics.com or follow us on X @KaziaTx.

    Forward-Looking Statements

    This announcement contains forward-looking statements, which can generally be identified as such by the use of words such as “may,” “will,” “plan,” “intend,” “estimate,” “future,” “forward,” “potential,” “anticipate,” or other similar words. Any statement describing Kazia’s future plans, strategies, intentions, expectations, objectives, goals or prospects, and other statements that are not historical facts, are also forward looking statements, including, but not limited to, statements regarding: Kazia’s intention to request and hold a Type C meeting with the FDA to discuss OS findings in GBM patients treated with paxalisib and to seek agency feedback on a potential regulatory pathway, the plan to propose initiation of the post-approval, randomized Phase 3 confirmatory study prior to submission of the NDA, the intention to present survival analyses, supporting clinical safety and planned confirmatory trial design for FDA discussion, Kazia’s intention to reference Project FrontRunner principles in its Type C briefing package, the objective to work collaboratively with the FDA under the guiding principles of Project FrontRunner, the plan to pursue a conditional approval in the front-line treatment setting of GBM, the plan to initiate the post-approval, randomized Phase 3 study prior to filing the NDA, the goal of ensuring that Kazia’s development plan and regulatory strategy fully reflects and aligns with the FDA’s framework and emphasis, the timing for results and data related to Kazia’s clinical and preclinical trials, Kazia’s strategy and plans with respect to its paxalisib program, the potential benefits of paxalisib, timing for any regulatory submissions or discussions with regulatory agencies and the potential market opportunity for paxalisib. Such statements are based on Kazia’s current expectations and projections about future events and future trends affecting its business and are subject to certain risks and uncertainties that could cause actual results to differ materially from those anticipated in the forward-looking statements, including risks and uncertainties associated with clinical and preclinical trials and product development, including the risk that interim or early data may not be consistent with final data, risks related to regulatory approvals, risks related to the impact of global economic conditions and U.S. government shutdown, and risks related to Kazia’s ability to regain and/or maintain compliance with the applicable Nasdaq continued listing requirements and standards. These and other risks and uncertainties are described more fully in Kazia’s Annual Report, filed on form 20-F with the SEC, and in subsequent filings with the United States Securities and Exchange Commission. Kazia undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events, or otherwise, except as required under applicable law. You should not place undue reliance on these forward-looking statements, which apply only as of the date of this announcement.

    SOURCE Kazia Therapeutics Limited

    Continue Reading

  • Brave Validates Privacy Promises with SOC 2 Audit of Search API

    Brave Validates Privacy Promises with SOC 2 Audit of Search API

    Brave has earned a SOC 2 Type II attestation for its Search API, an independent verification that confirms the company’s security and privacy practices are not only well-designed but also consistently followed.

    The attestation followed…

    Continue Reading

  • ‘A very bad day’ – Russell laments Mercedes’ Mexico City Grand Prix result as he criticises Turn 1 incidents

    ‘A very bad day’ – Russell laments Mercedes’ Mexico City Grand Prix result as he criticises Turn 1 incidents

    George Russell was left frustrated with Mercedes’ performance in the Mexico City Grand Prix and also criticised drivers who cut the opening corners of the race without being punished.

    The Briton endured a tough 71-lap race on Sunday at the…

    Continue Reading

  • Preview, full schedule and how to watch the action live

    Preview, full schedule and how to watch the action live

    2025 New York City Marathon schedule

    Sunday, 2 November

    The New York City Marathon has drawn over 55,000 participants, who will run through the five boroughs that make up the city. The race begins at Staten Island at 8:00am with men’s…

    Continue Reading

  • Bob Vylan describes US visa being revoked as “a relief”

    Bob Vylan describes US visa being revoked as “a relief”

    The frontman of the controversial punk-rock duo Bob Vylan has described having his visa revoked as a “relief”.

    Speaking on the Louis Theroux Podcast, Pascal Robinson-Foster, the singer in the duo, said: “We do not enjoy being in that…

    Continue Reading